Skip to main content

Random Number Generation using ns2

Random variables is an important concept in networks as the modeling of network traffic and other packet arrival times are mostly random models. Hence there is a necessity of modeling such metrics in ns2. NS2 supports various random models using different seed generations.

Seeds are numbers that are helpful in generating the random numbers. The seed number 0 indicates that the random number order changes every time the simulation is running. But other than 0, the order in which the random number generated are same.


The following listing 1 shows the random number generation for various distributions. This listing will just tell you how to create random number generation for various distributions. For seeing the output, refer to listing 2

Listing 1 – Random Number Generation Sample
#create the random number generation using RNG
set rand1 [new RNG]
set rand2 [new RNG]
set rand3 [new RNG]
#$repli is the value set already and it can be either 1 or <1 or >1
for {set i 1} {$i < $repli} {incr i} {
$rand1 next-substream;
$rand2 next-substream;
$rand3 next-substream;
}

Here are the distributions
Pareto Distribution
set r1 [new RandomVariable/Pareto]
$r1 use-rng $rand1
$r1 set avg_ 10.0
$r1 set shape_ 1.2

Constant – Specifies the constant number
set r2 [new RandomVariable/Constant]
$r2 use-rng $rand2
$r2 set val_ 5.0

Uniform distribution – Specifies the min and max number
set r3 [new RandomVariable/Uniform]
$r3 use-rng $rand3
$r3 set min_ 0.0
$r3 set max_ 10.0

Exponential distribution.- Specified the average value:
set r4 [new RandomVariable/Exponential]
$r4 use-rng $rand1
$r4 set avg_ 5

Hyperexponential distribution
set r5 [new RandomVariable/HyperExponential]
$r5 use-rng $rand2
$r5 set avg_ 1.0
$r5 set cov_ 4.0


The following listing 2 creates the random number generation for two different distributions uniform and exponential. The replication number is supplied through the command line option. If no replication number is supplied, it will be taken as 0 and it a value less than 1 is supplied then, it will be running with value 1. So the following example uses the replication number as 0, 1 or any higher number > 1 and it uses a seed value of 9999
The syntax for setting the seed value is

$defaultRNG seed N

Where N is a interger which may take 0 or 1 or any positive number

Listing 2 – Random number generation – Case 1
#filename : randtest1.tcl
#
# Usage: ns randtest.tcl [replication number]
#

if {$argc > 1} {
    puts "Usage: ns randtest1.tcl \[replication number\]"
    exit
}
set run 1
if {$argc == 1} {
    set run [lindex $argv 0]
}
if {$run < 1} {
    set run 1
}

# seed the default RNG
global defaultRNG
$defaultRNG seed 9999

# create the RNGs and set them to the correct substream
set arrivaldist [new RNG]
set size [new RNG]
for {set j 1} {$j < $run} {incr j} {
    $arrivaldist next-substream
    $size next-substream
}

# arrival_ is a exponential random variable describing the time between
# consecutive packet arrivals
set arrival_ [new RandomVariable/Exponential]
$arrival_ set avg_ 5
$arrival_ use-rng $arrivaldist

# size_ is a uniform random variable describing packet sizes
set size_ [new RandomVariable/Uniform]
$size_ set min_ 100
$size_ set max_ 5000
$size_ use-rng $size

# print the first 5 arrival times and sizes
for {set j 0} {$j < 5} {incr j} {
    puts [format "%-8.3f  %-4d" [$arrival_ value] \
            [expr round([$size_ value])]]
}
Here is the sample output for above file
Prompt] ~/ns-allinone-2.35/ns-2.35/tcl/ex $ ns randtest1.tcl 0
6.358     4783
5.828     1732
1.469     2188
0.732     3076
4.002     626
Prompt]~/ns-allinone-2.35/ns-2.35/tcl/ex $ ns randtest1.tcl 1
6.358     4783
5.828     1732
1.469     2188
0.732     3076
4.002     626
Prompt]~/ns-allinone-2.35/ns-2.35/tcl/ex $ ns randtest1.tcl 2
2.091     153
12.085    4732
3.588     2329
1.201     230
5.161     2980
Prompt]~/ns-allinone-2.35/ns-2.35/tcl/ex $ ns randtest1.tcl 3
2.515     1119
3.154     3118
9.673     1201
13.346    2515
7.052     2115
Prompt]~/ns-allinone-2.35/ns-2.35/tcl/ex $ ns randtest1.tcl 100
8.940     2149
0.888     4870
0.998     4860
1.801     1205
18.224    2534
Prompt]~/ns-allinone-2.35/ns-2.35/tcl/ex $ ns randtest1.tcl 0.5
6.358     4783
5.828     1732
1.469     2188
0.732     3076
4.002     626



Comments

Popular posts from this blog

Installing ns3 in Ubuntu 22.04 | Complete Instructions

In this post, we are going to see how to install ns-3.36.1 in Ubuntu 22.04. You can follow the video for complete details Tools used in this simulation: NS3 version ns-3.36.1  OS Used: Ubuntu 22.04 LTS Installation of NS3 (ns-3.36.1) There are some changes in the ns3 installation procedure and the dependencies. So open a terminal and issue the following commands Step 1:  Prerequisites $ sudo apt update In the following packages, all the required dependencies are taken care and you can install all these packages for the complete use of ns3. $ sudo apt install g++ python3 python3-dev pkg-config sqlite3 cmake python3-setuptools git qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-pygraphviz gir1.2-gtk-3.0 ipython3 openmpi-bin openmpi-common openmpi-doc libopenmpi-dev autoconf cvs bzr unrar gsl-bin libgsl-dev libgslcblas0 wireshark tcpdump sqlite sqlite3 libsqlite3-dev  libxml2 libxml2-dev libc6-dev libc6-dev-i386 libc...

Installation of NS2 (ns-2.35) in Ubuntu 20.04

Installation of NS2 (ns-2.35) in Ubuntu 20.04 LTS Step 1: Install the basic libraries like      $] sudo apt install build-essential autoconf automake libxmu-dev Step 2: install gcc-4.8 and g++-4.8 open the file using sudo mode $] sudo nano /etc/apt/sources.list Include the following line deb http://in.archive.ubuntu.com/ubuntu bionic main universe $] sudo apt update $] sudo apt install gcc-4.8 g++-4.8 Step 3:  Unzip the ns2 packages to home folder $] tar zxvf ns-allinone-2.35.tar.gz $] cd ns-allinone-2.35/ns-2.35 Modify the following make files. ~ns-2.35/Makefile.in Change @CC@ to gcc-4.8 change @CXX@ to g++-4.8 ~nam-1.15/Makefile.in ~xgraph-12.2/Makefile.in ~otcl-1.14/Makefile.in Change in all places  @CC@ to gcc-4.8 @CPP@ or @CXX@ to g++-4.8 open the file: ~ns-2.35/linkstate/ls.h Change at the Line no 137  void eraseAll() { erase(baseMap::begin(), baseMap::end()); } to This void eraseAll() { this->erase(baseMap::begin(), baseMap::end()); } All changes ...

Simulation of URDF, Gazebo and Rviz | ROS Noetic Tutorial 8

Design a User-defined robot of your choice (or you can use the URDF file) and enable the LIDAR Scanner so that any obstacle placed on the path of the light scan will cut the light rays. Visualize the robot in the Gazebo workspace, and also show the demonstration in RViz.   (NB: Gain knowledge on wiring URDF file and .launch file for enabling any user-defined robot to get launched in the gazebo platform.) SLAM : One of the most popular applications of ROS is SLAM(Simultaneous Localization and Mapping). The objective of the SLAM in mobile robotics is to construct and update the map of an unexplored environment with the help of the available sensors attached to the robot which will be used for exploring. URDF: Unified Robotics Description Format, URDF, is an XML specification used in academia and industry to model multibody systems such as robotic manipulator arms for manufacturing assembly lines and animatronic robots for amusement parks. URDF is especially popular with users of the ...